3.5

证明二元不动点定理:对于任何 F,GΛF,G\in \Lambda,存在 X,YΛX,Y \in \Lambda,满足:

FXY=XFXY=XGXY=YGXY=Y

证明

由标准组合子 Kλxy.xK\equiv \lambda xy.xKλxy.yK^* \equiv \lambda xy.y,定义一种有序对关系:

[M,N]=λz.zMN[M, N] = \lambda z. zMN,从而 [M,N]K=KMN=M[M,N]K = KMN = M[M,N]=KMN=N[M,N] = K^*MN=N

要证:X1,X2\exists X_1, X_2X1=FX1X2,X2=GX1X2X_1=FX_1X_2, X_2=GX_1X_2,从二元化归到一元,构造:

[F1(XK)(XK),F2(XK)(XK)]()[F_1(XK)(XK*), F_2(XK)(XK^*)] \cdots(*)

\exists fixed point XXX=()X = (*),定义 X1=XK,X2=XKX_1 = XK, X_2 = XK^*,从而有

X1=F1X1X2X_1=F_1X_1X_2X2=F2X1X2X_2=F_2X_1X_2