1.7

证明:从本原函数出发,经复合和算子 i=nm[]\prod\limits_{i=n}^{m}[\cdot] 可以生成所有的初等函数,这里 i=nm[f(i)]={f(n)f(n1)  f(m),if mn1,if m<n \prod\limits_{i=n}^{m}[f(\vec{i})] = \left\{ \begin{array}{ll} f(n) \cdot f(n-1) \cdot\ \cdots \ \cdot f(m), & \text{if } m\geq n\\ 1, & \text{if } m < n \end{array} \right.

证明

只需证 i=0n\sum\limits_{i=0}^ni=0n\prod\limits_{i=0}^n 和函数 ¨\ddot{-} 可表示出。

  1. i=0n\prod\limits_{i=0}^ni=nm\prod\limits_{i=n}^{m} 的特例,取 n=0n=0 即可;

  2. xy=i=1yP11(x)x^y = \prod\limits_{i=1}^{y}P_1^1(x),从而 2y=i=1ySSZ(i)2^y = \prod\limits_{i=1}^{y}SSZ(i)

  3. N(x)=i=1xZ(i)N(x) = \prod\limits_{i=1}^{x}Z(i)

  4. leq(x,y)=i=xyZ(i)={0,if xy1,if x>y\text{leq}(x,y) = \prod\limits_{i=x}^{y}Z(i) = \left\{\begin{array}{ll}0, & \text{if } x \leq y \\ 1, & \text{if } x > y\end{array}\right.

  5. geq(x,y)=i=yxZ(i)={0,if xy1,if x<y\text{geq}(x, y) = \prod\limits_{i=y}^{x} Z(i)= \left\{\begin{array}{ll}0, & \text{if } x \geq y \\ 1, & \text{if } x < y\end{array}\right.

  6. eq(x,y)=leq(x,y)Ngeq(x,y)={0,if x=y1,if xy\text{eq}(x,y) = \text{leq}(x,y)^{N\text{geq}(x,y)}=\left\{\begin{array}{ll} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y\end{array}\right.

  7. log(x)=i=0xiN eq(2i,x)\log(x) = \prod\limits_{i=0}^x i^{N \text{ eq}(2^i,x)}

    注意:log(2y)=i=02yiN eq(2i,2y)\log(2^y) = \prod\limits_{i=0}^{2^y}i^{N\text{ eq}(2^i, 2^y)}

  8. i=nmf(i,x)=log(2i=nmf(i,x))=log(i=nm2f(i,x))\sum\limits_{i=n}^{m} f(i, \vec{x}) = \log(2^{\sum_{i=n}^mf(i, \vec{x})}) = \log(\prod\limits_{i=n}^{m}2^{f(i, \vec{x})})

  9. xy=i=1xP11(y)x \cdot y = \sum\limits_{i=1}^{x}P_1^1(y)

  10. x+y=log(2x2y)x+y = \log(2^x \cdot 2^y)

  11. x¨y=(i=y+1xSZ(i))+(i=x+1ySZ(i))x \ddot{-} y = \left(\sum\limits_{i=y+1}^{x}SZ(i)\right) + \left(\sum\limits_{i=x+1}^{y}SZ(i)\right)