1.18

kN+k \in \mathbb{N}^+,函数 f:NkNf: \mathbb{N}^ k\rightarrow \mathbb{N}g:NkNg: \mathbb{N}^k \rightarrow \mathbb{N} 尽在有穷个点取不同值,证明:ff 为递归函数当且仅当 gg 为递归函数。

证明

ffgg 在有穷个点取不同值,从而有 kNk \in \mathbb{N},使当 x>kx > k 时,f(x)=g(x)f(x) =g(x) ,从而, f(x)={f(x),if xkg(x),if x>k f(x) = \left\{\begin{array}{rl} f(x), & \text{if } x \leq k\\ g(x), & \text{if } x >k\end{array}\right. f(x)={f(x),if xk0,if x>k f^\prime(x) = \left\{\begin{array}{ll} f(x), & \text{if }x \leq k\\ 0, &\text{if }x > k \end{array}\right. 易见,fPRFf^\prime \in \mathcal{PRF}

f(x)=f(x)N(x˙k)+g(x)N2(x˙k)f(x) = f^\prime(x)N(x\dot{-}k) + g(x)N^2(x\dot{-}k)

易见,gPRFfPRFg \in \mathcal{PRF} \Rightarrow f \in \mathcal{PRF}

同理,fPRFgPRFf \in \mathcal{PRF} \Rightarrow g\in \mathcal{PRF}