3.10

证明:对任何 M,NΛM, N \in \LambdaM=βNλβM=N M =_\beta N \Leftrightarrow \lambda\beta \vdash M=N

证明

"\Rightarrow":首先,我们证明:

M,NΛ,MβNλβM=N\forall M,N \in \Lambda, M \rightarrow_\beta N \Rightarrow \lambda \beta \vdash M = N

M,NM,N 的结构做归纳:

Basis:(M,N)β(M, N) \in \betaβ{((λx.M)N,M[x:=N]):M,NΛxV}\beta \equiv \{((\lambda x. M) N, M[x := N]) : M, N \in \Lambda \land x \in V\},此时有 λβM=N\lambda \beta \vdash M = N

I.H. (M,N)(M,N)(M,N) \in (M', N') 的合拍闭包,根据 Basis 有 λβM=N\lambda \beta \vdash M' = N'

λβMM=MN(μ)\lambda \beta \vdash M'M' = M'N \quad\cdots (\mu)

λβMM=NM(ν)\lambda \beta \vdash M'M' = N'M'\quad \cdots (\nu)

λβλz.M=λz.N(ε)\lambda \beta \vdash \lambda z. M' = \lambda z. N' \quad \cdots (\varepsilon)

所以 λβ\lambda \beta(M,N)(M',N') 的合拍闭包封闭,从而 λβM=βN\lambda \beta \vdash M =_\beta N,根据习题 (3.9)M=βNM=_\beta N,则 n0\exists n \geq 0 以及 P0,,PnP_0, \cdots, P_n 使得

P0=MP_0 = MPn=NP_n = Ni<n,PiβPi+1\forall i<n, P_i \rightarrow_\beta P_{i+1}Pi+1βPiP_{i+1} \rightarrow_\beta P_i

从而我们有:

λβP0=P1,λβP1=P2,λβPn1=Pn\lambda \beta \vdash P_0 = P_1, \lambda \beta \vdash P_1 = P_2, \cdots \lambda\beta \vdash P_{n-1} = P_n

由规则 (τ)(\tau) 可知,λβP0=Pn\lambda \beta \vdash P_0 = P_n,即 λβM=N\lambda \beta \vdash M = N

\Leftarrow” :对 λβP=Q\lambda \beta \vdash P = Q 的结构作归纳:

(ρ)(\rho)P=QP=Q 呈形 M=MM=M 时,易见 M=βMM =_\beta M,即 P=βQP =_\beta Q

(β)(\beta)P=QP = Q 呈形 (λx.M)N=M[x:=N](\lambda x. M)N = M[x:=N] 时,因为 (λx.M)N=βM[x:=N](\lambda x. M)N =_\beta M[x:=N],所以 P=βQP = _\beta Q

(σ)(\sigma) 如果 λβP=Q\lambda \beta \vdash P = QP=βQP =_\beta Q,那么 Q=βPQ =_\beta P

λβP=QλβQ=PQ=βP\lambda \beta \vdash P = Q \Rightarrow \lambda \beta \vdash Q = P \Rightarrow Q =_\beta P

(τ)(\tau) 如果 λβM=NM=βN,λβN=LN=βL\lambda \beta \vdash M = N \Rightarrow M =_\beta N, \lambda \beta \vdash N = L \Rightarrow N=_\beta L,那么 M=βLM =_\beta L

λβM=N,λβN=LλβM=LM=βL\lambda \beta \vdash M = N, \lambda \beta \vdash N = L \Rightarrow \lambda \beta \vdash M = L \Rightarrow M =_\beta L

(μ),(ν),(ξ)(\mu), (\nu), (\xi) 同理可验证。