1.16

f:NNf: \mathbb{N}\rightarrow \mathbb{N} 满足 f(0)=0 f(0)=0 f(1)=1 f(1) = 1 f(2)=22, f(2) = 2^2, f(3)=333 f(3) = 3^{3^3} \cdots \cdots f(n)=n...n(the number of n is n) f(n) = n^{.^{.^{.^n}}} (\text{the number of } n \text{ is } n) 证明:fPRFEFf \in \mathcal{PRF} - \mathcal{EF}

证明

g(m,n)=n...ng(m,n) = n^{.^{.^{.^n}}},具有 mmnn 的形式,

{g(0,n)=N2ng(m+1,n)=ng(m,n)\left\{\begin{array}{ll} g(0, n) = N^2n \\g(m+1, n) = n^{g(m,n)}\end{array}\right.,从而 f(n)=g(n,n)f(n) = g(n, n)

gPRF\because g \in \mathcal{PRF}

fPRF\therefore f \in \mathcal{PRF}

以下证 fEF f \notin \mathcal{EF}

从而 k n,f(n)<2...2n}k\exists k ~\forall n, f(n) < 2^{.^{.^{.^{2^n}}}} \} k 个 2,取 n=k+2n = k+2,从而

(k+2)...(k+2)}k+2(k+2)^{.^{.^{.^{(k+2)}}}} \}k+2<2...2(k+2)}k< 2^{.^{.^{.^{2^{(k+2)}}}}} \}k 个 2,矛盾。