1.19

证明: f(n)=(5+12)n f(n) = \Bigl\lfloor\left(\frac{\sqrt{5}+1}{2}\right)n\Bigr\rfloor 为初等函数。

证明

f(n)=maxx2n.x5+12nf(n) = \max x \leq 2n. x \leq \frac{\sqrt{5}+1}{2}n

f(n)=maxx2n.2x5n+nf(n) = \max x \leq 2n. 2x \leq \sqrt{5} n+n

f(n)=maxx2n.2x¨n5nf(n) = \max x \leq 2n. 2x \ddot{-}n \leq \sqrt{5}n

f(n)=maxx2n.(2x¨n)25n2f(n) = \max x \leq 2n. (2x \ddot{-}n)^2 \leq 5n^2

f(n)=maxx2n.4x24n2+4xnf(n) = \max x \leq 2n. 4x^2 \leq 4n^2 + 4xn

f(n)=maxx2n.x2˙(n2+xn)EFf(n) = \max x \leq 2n. x^2 \dot{-} (n^2 + xn) \in \mathcal{EF}