1.2

证明:对任意 kN+k \in \mathbb{N}^{+}f:NkNf: \mathbb{N}^k \rightarrow \mathbb{N},若 fBFf \in \mathcal{BF},则存在 hh,使得 f(x)<x+h f(\vec{x}) < \|\vec{x}\|+h 其中 x=max{xi;1ik}. \|\vec{x}\| = \max\{x_i; 1\leq i \leq k\}.

证明

fBFf \in \mathcal{BF}

  • case 1:如果 ff 为零函数 ZZ,后继函数 SS,或投影函数 PinP_i^n 之一, Z(x)<x+1,S(x)<x+2,Pin(x)<x+1 Z(x) < x+1, \quad S(x)<x+2, \quad P_i^n(\vec{x})<\|\vec{x}\|+1 显然存在这样的 hh
  • case 2:设 f(x)=g(g1(x),g2(x),,gm(x))f(\vec{x}) = g(g_1(\vec{x}), g_2(\vec{x}), \cdots, g_m(\vec{x}))

    g(y)<y+h0g(\vec{y}) < \|\vec{y}\| + h_0gi(xi)<x+hi (i=1,2,3,,m)g_i(\vec{x_i}) < \|\vec{x}\|+h_i\ (i = 1,2,3, \cdots, m)

    从而f(x)<max1imgi(x)+h0<max1im(x+hi)+h0<x+h0+h1++hmf(\vec{x}) < \max_{1\leq i \leq m} g_i(\vec{x}) + h_0<\max_{1\leq i \leq m}(\|\vec{x}\|+ h_i) + h_0 < \|\vec{x}\|+ h_0+h_1+ \cdots + h_m

    h=h0+h1++hmh = h_0+h_1+ \cdots + h_m 即可。