1.17
设 g:N→N∈PRF,f:N2→N ,满足
f(x,0)=g(x)
f(x,y+1)=f(f(⋯f(f(x,y),y−1),⋯),0),
证明:f∈PRF
证明
证明 f(x,y) 呈形 ga(y)(x)
Basis: y=0,f(x,y)=f(x,0)=g(x),a(0)=1
假设 f(x,y)=ga(y)(x),那么,
f(x,y+1)=f(f(⋯f(f(x,y),y−1),⋯),0)=ga(0)(f(⋯f(f(x,y),y−1),⋯),1)=ga(0)+a(1)(f(⋯f(f(x,y),y−1),⋯),2)=ga(0)+a(1)+⋯a(n)(x)
从而,a(0)=1,a(y+1)=a(0)+a(1)+⋯+a(y)
易见 a(y)∈PRF,故 f(x,y)=ga(y)(x)
令 h(x,y)=gy(x),因为
{h(x,0)=xh(x,y+1)=g(h(x,y))
∴h∈PRF
∵f(x,y)=h(x,a(y))
∴f∈PRF