1.17

g:NNPRF,f:N2Ng: \mathbb{N}\rightarrow \mathbb{N} \in \mathcal{PRF}, f: \mathbb{N}^2 \rightarrow \mathbb{N} ,满足 f(x,0)=g(x) f(x, 0)=g(x) f(x,y+1)=f(f(f(f(x,y),y1),),0), f(x,y+1) = f(f(\cdots f(f(x,y), y-1), \cdots),0), 证明:fPRFf \in \mathcal{PRF}

证明

证明 f(x,y)f(x,y) 呈形 ga(y)(x)g^{a(y)}(x)

Basis: y=0,f(x,y)=f(x,0)=g(x),a(0)=1 y = 0, f(x,y) = f(x,0) = g(x), a(0) = 1

假设 f(x,y)=ga(y)(x)f(x,y) = g^{a(y)}(x),那么, f(x,y+1)=f(f(f(f(x,y),y1),),0)=ga(0)(f(f(f(x,y),y1),),1)=ga(0)+a(1)(f(f(f(x,y),y1),),2)=ga(0)+a(1)+a(n)(x) \begin{array}{rl} f(x, y+1) &=f(f(\cdots f(f(x,y), y-1), \cdots), 0) \\ & = g^{a(0)}(f(\cdots f(f(x,y), y-1), \cdots), 1) \\ & = g^{a(0)+a(1)}(f(\cdots f(f(x,y), y-1), \cdots), 2) \\ & = g^{a(0)+a(1)+ \cdots a(n)}(x) \end{array} 从而,a(0)=1,a(y+1)=a(0)+a(1)++a(y)a(0)=1, a(y+1) = a(0)+a(1)+\cdots +a(y)

易见 a(y)PRFa(y) \in \mathcal{PRF},故 f(x,y)=ga(y)(x)f(x,y) = g^{a(y)} (x)

h(x,y)=gy(x)h(x,y) = g^y(x),因为 {h(x,0)=xh(x,y+1)=g(h(x,y)) \left\{\begin{array}{ll} h(x, 0) = x \\ h(x, y+1) = g(h(x,y)) \end{array}\right. hPRF\therefore h \in \mathcal{PRF}

f(x,y)=h(x,a(y))\because f(x,y)= h(x, a(y))

fPRF\therefore f \in \mathcal{PRF}