1.13

f:NNf:\mathbb{N} \rightarrow \mathbb{N} 满足 f(0)=1 f(0) = 1

f(1)=1 f(1) = 1

f(x+2)=f(x)+f(x+1) f(x+2) =f(x)+f(x+1)

证明:

(1) fPRFf \in \mathcal{PRF}

(2) fEFf \in \mathcal{EF}

证明

(1) 令 [a0,a1,,an]i=0npiai [a_0, a_1, \cdots, a_n] \prod\limits_{i=0}^{n} p_i^{a_i} 这里 pip_i 为第 ii 个素数,比如p0=2p_0=2p1=3p_1=3p2=5p_2=5,那么 [a0,a1,a2]=2a03a15a2[a_0, a_1, a_2] = 2^{a_0} \cdot 3^{a_1} \cdot 5^{a_2},为 Gödel 编码形式

epi(a)=aep_i(a) = a 的素因子分解式中第 ii 个素数的指数。易见 epi[a0,a1,,an]={ai,in0,i>n ep_i[a_0, a_1, \cdots, a_n] = \left\{\begin{array}{ll} a_i, & i\leq n \\ 0, & i>n\end{array}\right. 从而令 F(n)=[f(n),f(n+1)]F(n) = [f(n), f(n+1)]F(0)=[f(0),f(1)]=2131=6F(0) = [f(0), f(1)] = 2^1 \cdot 3^1 = 6 F(n+1)=[f(n+1),f(n+2)]=[f(n+1),f(n+1)+f(n)]=[ep1F(n),ep1F(n)+ep0F(n)]=H(F(n)) \begin{array}{rl} F(n+1) & = [f(n+1), f(n+2)]\\ & = [f(n+1), f(n+1)+f(n)] \\ & = [ep_1F(n), ep_1F(n)+ep_0F(n)] \\ & = H(F(n))\end{array} 这里,H(x)=[ep1x,ep1x+ep0x]=2ep1x3ep1x3ep0xH(x) = [ep_1x, ep_1x+ep_0x] = 2^{ep_1x} \cdot 3^{ep_1x} \cdot 3^{ep_0x}

H(x)\therefore H(x) 是初等的。

F(0)=6,F(n+1)=H(F(n))\because F(0)=6, F(n+1) = H(F(n)) ,以及 HH 为原始递归函数

F(n)\therefore F(n) 为原始递归函数

f(n)=ep0F(x)\because f(n)=ep_0F(x)

f(n)\therefore f(n) 为原始递归函数。

(2) 现在证明 f(n)f(n) 是初等的。

证法一:

首先有 f(n)2nf(n) \leq 2^n ,归纳证明如下:

n=0,1n=0,1 时,f(0)=120f(0)=1 \leq 2^0f(1)=121f(1) = 1 \leq 2^1

归纳假设:kn,f(k)2k\forall k \leq n, f(k) \leq 2^k

归纳步骤:当 n<2n<2 时,f(n)2nf(n) \leq 2^n 为真,当 n2 n \geq 2 时,

f(n)=f(n1)+f(n2)2n1+2n22n232n242nf(n) = f(n-1)+f(n-2) \leq 2^{n-1} +2^{n-2} \leq 2^{n-2} \cdot 3 \leq 2^{n-2} \cdot 4 \leq 2^n

其次,还有 F(n)G(n)F(n) \leq G(n) ,这里 G(n)=22n32n+1G(n) = 2^{2^n}\cdot 3^{2^{n+1}},且 G(n)G(n) 是初等的。

F(n)=[f(n),f(n+1)]=2f(n)3f(n+1)22n32n+1=G(n)F(n) = [f(n), f(n+1)] = 2^{f(n)} \cdot 3^{f(n+1)} \leq 2^{2^n}\cdot 3^{2^{n+1}} = G(n),易见 G(n)G(n) 的初等性。

α(n)=[F(0),,F(n)][G(0),,G(n)]\alpha(n) = [F(0), \cdots, F(n)] \leq [G(0), \cdots, G(n)],有 α(n)i=0npiG(i)i=0npn(22n32n+1(n+1))=β(n) \alpha(n) \leq \prod\limits_{i=0}^np_i^{G(i)} \leq \prod\limits_{i=0}^np_n^{(2^{2^n}\cdot 3^{2^{n+1}} \cdot (n+1))} = \beta(n) 易见,β(n)\beta(n) 为初等函数。

因为 α(n)=μxβ(n)(ep0x=F(0))i<n,epi+1x=H(epix)=μxβ(n)[ep0x=6i<n,(epi+1x¨H(epix)=0)]=μxβ(n)[ep0x=6+in¨1(epi+1x¨H(epix))N2n]=μxβ(n)γ(n) \begin{array}{rl}\alpha(n) & = \mu x \leq \beta(n) \cdot (ep0x = F(0)) \wedge \forall i<n, ep{i+1}x = H(ep_ix) \\ & = \mu x \leq \beta(n) \cdot[ep_0x=6 \wedge \forall i <n , (ep_{i+1}x \ddot{-}H(ep_ix)=0)] \\ &= \mu x \leq \beta(n) \cdot\left[ep_0x=6 + \sum_{i \rightarrow n \ddot{-}1}(ep_{i+1}x\ddot{-}H(ep_ix))N^2n\right] \\ & = \mu x \leq \beta(n) \cdot \gamma(n) \end{array} 易见,γ(n)\gamma(n) 是初等的,所以 α(n)\alpha(n) 是初等的。

因为 f(n)=ep0(F(n))=ep0(epn(α(n)))f(n) = ep_0(F(n)) = ep_0(ep_n(\alpha(n))),所以 f(n)f(n) 是初等的。

证法二: f(n)=15(1+52)n+115(152)n+1 f(n) = \frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n+1} (该公式的证明参见 Kolman B, Busby R C. Ross S. Discrete mathematical structures. Prentice-Hall, Inc. 1996 (3rd) )

从而 f(n)=12n+15[(1+5)n+1(15)n+1]=12n+15[i=0n+1Cn+1i(5)ii=0n+1Cn+1i(5)i]=12n+15[i=0n+1Cn+1i2(5)iN2rs(i,2)]=12n[i=0n+1Cn+1i5i2N2rs(i,2)] \begin{array}{rl}f(n) & = \frac{1}{2^{n+1}\sqrt5}\left[(1+\sqrt 5)^{n+1} - (1-\sqrt 5)^{n+1}\right] \\ & = \frac{1}{2^{n+1}\sqrt5}\left[\sum_{i=0}^{n+1}C_{n+1}^i (\sqrt 5)^i - \sum_{i=0}^{n+1}C_{n+1}^i (-\sqrt 5)^i \right] \\ & = \frac{1}{2^{n+1}\sqrt5}\left[\sum_{i=0}^{n+1}C_{n+1}^i 2(\sqrt 5)^i N^2rs(i,2) \right] \\ & = \frac{1}{2^{n}}\left[\sum_{i=0}^{n+1}C_{n+1}^i 5^{\lfloor\frac{i}{2}\rfloor} N^2rs(i,2) \right] \\ \end{array}