1.5

pg(x,y)=2x(2y+1)˙1pg(x, y) = 2^x(2y+1)\dot{-}1,证明:存在初等函数 K(z)K(z)L(z) L(z) 使得 K(pg(x,y))=x, K(pg(x,y))=x, L(pg(x,y))=y, L(pg(x,y))=y, pg(K(x),L(y))=z. pg(K(x), L(y)) = z.

证明

z=2x(2y+1)˙1z = 2^x(2y+1)\dot{-}1

iff z+1=2x(2y+1)z+1=2^x(2y+1)

iff x=ep0(z+1)x = \text{ep}_0(z+1)2y+1=z+12x2y+1=\frac{z+1}{2^x}

代入 xx,得 2y+1=[z+12ep0(z+1)]2y+1 = \left[\frac{z+1}{2^{\text{ep}_0(z+1)}}\right]

iff x=K(z)x=K(z)y=L(z)y=L(z)

这里 K(z)=ep0(z+1)K(z) = \text{ep}_0(z+1)L(z)=[[z+12ep0(z+1)]˙12]L(z) = \left[\frac{\left[\frac{z+1}{2^{\text{ep}_0(z+1)}}\right]\dot{-}1}{2}\right]