1.20

证明:Ack(4,n)PRFEFAck(4,n) \in \mathcal{PRF} - \mathcal{EF},其中 Ack(x,y)Ack(x,y) 是 Ackermann 函数。

证明

f(n)=Ack(4,n)f(n) = Ack(4,n)

f(0)=Ack(4,0)=Ack(3,1)=f3(1)=21+33=13f(0) = Ack(4,0) = Ack(3,1) = f_3(1)=2^{1+3}-3=13

f(n+1)=Ack(4,n+1)=Ack(3,A(4,n))=Ack(3,f(n))=2f(n)+3˙3f(n+1) = Ack(4, n+1) = Ack(3, A(4,n)) = Ack(3, f(n)) = 2^{f(n)+3}\dot{-}3

g(n)=f(n)+3g(n) = f(n)+3,从而g(0)=16=24g(0) = 16 = 2^4g(n+1)=g(n)g(n+1) = g(n)

因此,g(n)=22}n+3g(n) = 2^{\cdot^{\cdot^{\cdot^2}}} \left.\right\}n+322

从而,Ack(4,n)=22˙3PRFAck(4,n) = 2^{\cdot^{\cdot^{\cdot^2}}} \dot{-}3 \in \mathcal{PRF}

\because limn22}k  2g(n)=0 \lim\limits_{n \rightarrow \infty}\frac{2^{\cdot^{\cdot^{\cdot^2}}} \left.\right\}k \text{ 个 }2}{g(n)} = 0 gEF\therefore g \notin \mathcal{EF}fEF\therefore f \notin \mathcal{EF}