1.25

f:NNf: \mathbb{N} \rightarrow \mathbb{N} 定义为 f(n)=π  n  f(n)=\pi \text{ 的十进制展开式中第 }n\text{ 位数字} 例如 f(0)=3,f(1)=1,f(2)=4f(0) = 3, f(1) = 1, f(2) = 4。证明:fGRFf \in \mathcal{GRF}

证明

首先,我们有 11+x2=i=0n(1)ix2i+(1)n+1x2n+21+x2 \frac{1}{1+x^2} = \sum\limits_{i=0}^{n}(-1)^ix^{2i} + \frac{(-1)^{n+1}x^{2n+2}}{1+x^2}

arctanx=0xdt1+t2=i=0n(1)i0xt2idt+0x(1)n+11+t2t2n+2dt \therefore \arctan x = \int_0^x\frac{\text{d}t}{1+t^2} =\sum\limits_{i=0}^{n}(-1)^i\int_0^xt^{2i}\text{d}t + \int_0^x\frac{(-1)^{n+1}}{1+t^2}t^{2n+2}\text{d}t

=i=0n(1)ix2i+12i+1+0x(1)n+11+t2t2n+2dt() =\sum\limits_{i=0}^{n}(-1)^i\frac{x^{2i+1}}{2i+1} + \int_0^x\frac{(-1)^{n+1}}{1+t^2}t^{2n+2}\text{d}t \quad \cdots (*)

由 Hutton's Formula 知, π4=2arctan13+arctan17π=8arctan13+4arctan17 \frac{\pi}{4} = 2\arctan\frac{1}{3}+\arctan\frac{1}{7} \Rightarrow \pi = 8\arctan\frac{1}{3}+4\arctan\frac{1}{7} 在 (*) 式中取 n=2k+1n = 2k+1,这是使余项为正且估计更精确 π=8i=02k+1(1)i1(2i+1)32i+1+8013t4k+41+t2dt+4i=02k+1(1)i1(2i+1)72i+1+4017t4k+41+t2dt \pi = 8 \sum\limits_{i=0}^{2k+1}(-1)^i\frac{1}{(2i+1)3^{2i+1}} + 8 \int_0^{\frac{1}{3}}\frac{t^{4k+4}}{1+t^2}\text{d}t + 4 \sum\limits_{i=0}^{2k+1}(-1)^i\frac{1}{(2i+1)7^{2i+1}}+ 4 \int_0^{\frac{1}{7}}\frac{t^{4k+4}}{1+t^2}\text{d}t

tk=8i=02k+1(1)i1(2i+1)(132i+1+1272i+1) t_k =8 \sum\limits_{i=0}^{2k+1}(-1)^i\frac{1}{(2i+1)}\left(\frac{1}{3^{2i+1}} + \frac{1}{2 \cdot 7^{2i+1}}\right)

rk=8013t4k+41+t2dt+4017t4k+41+t2dt r_k =8 \int_0^{\frac{1}{3}}\frac{t^{4k+4}}{1+t^2}\text{d}t + 4\int_0^{\frac{1}{7}}\frac{t^{4k+4}}{1+t^2}\text{d}t

8013t4k+4dt+4017t4k+4dt \leq 8 \int_0^{\frac{1}{3}}t^{4k+4}\text{d}t + 4\int_0^{\frac{1}{7}}t^{4k+4}\text{d}t

813134k+4+417174k+4134k180k \leq 8 \cdot \frac{1}{3}\cdot \frac{1}{3^{4k+4}} + 4\cdot \frac{1}{7} \cdot \frac{1}{7^{4k+4}} \leq \frac{1}{3^{4k}} \leq \frac{1}{80^k}

因此,π=tk+rk\pi = t_k + r_k,且 0<rk<180k0 <r_k < \frac{1}{80^k}tt 为有理数,设 tkt_k 的十进制展开式为 tk=ak0ak1ak2akn t_k = a_{k0}a_{k1} a_{k2} \cdots a_{kn} \cdots 对于 nNn \in \mathbb{N},存在 ln+1l \geq n+1 使在 tlt_l 中并非al,n+1,al,n+2,,al,la_{l,n+1}, a_{l, n+2}, \cdots, a_{l,l} 皆为 99,若不然,对任何 ln+1l \geq n+1al,al,n+1,al,n+2,,al,la_l, a_{l,n+1}, a_{l, n+2}, \cdots, a_{l,l} 皆为 99

10lπ=10ltl+10lrl\because 10^{l}\pi = 10^lt_l + 10^lr_l10ltl<10lπ<10ltl+18l\therefore 10^lt_l < 10^l \pi < 10^lt_l+\frac{1}{8^l}

这样在 π\pi 的展开式中,从某位起皆为 99,从而 π\pi 为有理数

l=l(n)=μl.(ln+1l=l(n) = \mu l. (l\geq n+1 且在 al,n+1,,al,la_{l, n+1}, \cdots, a_{l,l} 中并非皆为 9)9)

a(l,i)=al,i=tl\because a(l,i) = a_{l, i} = t_l 展开式的第 ii 个数字 EF\in \mathcal{EF}

l(n)=μl.((ln+1)i=n+1l(al,i˙90))GRF\therefore l(n) = \mu l .((l \geq n+1) \wedge \prod\limits_{i = n+1}^l(a_{l,i}\dot{-}9 \neq 0)) \in\mathcal{GRF}

(注:若知道 π\pi 展开式中连续 99 的个数有上限,则 l(n)EFl(n) \in \mathcal{EF}

我们有 tk<π<tl+180lt_k < \pi < t_l+\frac{1}{80^l}

对于 nNn \in \mathbb{N},取 l=l(n)l = l(n)

al,n+1,,al,l\because a_{l, n+1}, \cdots, a_{l,l} 并非皆为 99

\thereforeal,m<9a_{l,m} < 9,这里 n+1mln+1 \leq m \leq l,设 π=π0π1π2\pi = \pi_0\pi_1\pi_2\cdots

从而 tl<π<tl+180mt_l < \pi < t_l + \frac{1}{80^m}10mtl<10mπ<10mtl+18m10^mt_l < 10^m\pi<10^mt_l + \frac{1}{8^m}

从而

al0al1al2alnaln+1almalm+1a_{l0}a_{l1}a_{l2}\cdots a_{ln}a_{l\overline{n+1}} \cdots a_{lm}a_{l\overline{m+1}} \cdots

<π0π1π2πnπn+1πmπm+1<\pi_0\pi_1\pi_2 \cdots \pi_n\pi_{n+1}\cdots \pi_m \pi_{m+1} \cdots

<al0al1al2alnaln+1almalm+1+18m(m1)< a_{l0}a_{l1}a_{l2}\cdots a_{ln}a_{l\overline{n+1}} \cdots a_{lm}a_{l\overline{m+1}} \cdots + \frac{1}{8^m}(m \geq 1)

<al0al1al2alnaln+1(alm+1)alm+1< a_{l0}a_{l1}a_{l2}\cdots a_{ln}a_{l\overline{n+1}} \cdots (a_{lm}+1)a_{l\overline{m+1}} \cdots

因此, al0al1alnaln+1almπ0π1π2πnπn+1πmal0al1al2alnaln+1(alm+1) \begin{array}{rl} a_{l0}a_{l1}\cdots a_{ln}a_{l\overline{n+1}} \cdots a_{lm} & \leq \pi_0\pi_1\pi_2 \cdots \pi_n\pi_{n+1}\cdots \pi_m \\ & \leq a_{l0}a_{l1}a_{l2}\cdots a_{ln}a_{l\overline{n+1}} \cdots (a_{lm}+1) \end{array} mn+1\because m \geq n+1πn=aln\therefore \pi_n = a_{ln}

因此,f(n)=πn=a(l(n),n)GRFf(n) = \pi_n = a(l(n), n) \in \mathcal{GRF}