3.13

证明:若在系统 λβ\lambda \beta 中加入下述公理 (A)λxy.x=λxy.y, \text{(A)}\quad \lambda xy.x = \lambda xy. y, 则对任何的 M,NΛM, N \in \Lambdaλβ+(A)M=N\lambda \beta+(\text{A}) \vdash M = N

证明

【方法一】

λβ+(A)λxy.x=λxy.y\lambda \beta + (\text{A}) \vdash \lambda xy.x = \lambda xy. y

(λxy.x)MN=(λxy.y)MN(ν)\Rightarrow (\lambda xy. x) MN = (\lambda xy. y)MN\cdots (\nu)

M=N(β)M = N \cdots(\beta)

【方法二】

即证形式系统 λβ+(A)\lambda\beta + (\text{A}) 矛盾,viz. {λβ+(A)λx.x=λx.xxλβλx.x=λx.xx \left\{ \begin{array}{l} \lambda\beta + (\text{A}) \vdash \lambda x.x = \lambda x. xx \\ \lambda\beta \nvdash \lambda x.x =\lambda x. xx \end{array}\right. λxy.x=λxy.y(A)\lambda xy.x = \lambda xy. y\cdots(\text{A})

(λxy.x)(yy)=(λxy.y)(yy)(ν)\Rightarrow (\lambda xy. x)(yy) = (\lambda xy. y)(yy) \cdots(\nu)

λy.yy=(λxy.y)(yy)(β)\Rightarrow \lambda y. yy = (\lambda xy. y)(yy) \cdots(\beta)

λy.yy=λy.y(β)\Rightarrow \lambda y. yy = \lambda y. y \cdots(\beta)